How do you sketch the graph y=x^4+2x^2-3 using the first and second derivatives?

1 Answer
Jan 1, 2017

See the sketch of the graph below

Explanation:

We need

(x^n)'=nx^(n-1)

a^2-b^2=(a-b)(a+b)

Let f(x)=x^4+2x^2-3

We can factorise

f(x)=(x^2+3)(x^2-1)=(x^2+3)(x+1)(x-1)

f'(x)=4x^3+4x=4x(x^2+1)

We find critical points when f'(x)=0

4x(x^2+1)=0 for x=0

We can calculate the second derivative

f''(x)=12x^2+4

f''(0)=4 >0, this is a minimum

We can do a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-1color(white)(aaaaaaaa)0color(white)(aaaaaaaa)1color(white)(aaaa)+oo

color(white)(aaaa)f'(x)color(white)(aaaaa)-color(white)(aaaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)#color(white)(aaaa)↘#color(white)(aaaaa)-3color(white)(aaaaaaaa)

lim_(x->+-oo)f(x)=+oo

graph{(y-(x^4+2x^2-3))=0 [-7.9, 7.9, -3.95, 3.95]}