How do you sketch the graph f(x)=2x^4-26x^2+72?
1 Answer
See explanation...
Explanation:
f(x) = 2x^4-26x^2+72
color(white)(f(x)) = 2((x^2)^2-13(x^2)+36)
color(white)(f(x)) = 2(x^2-4)(x^2-9)
color(white)(f(x)) = 2(x-2)(x+2)(x-3)(x+3)
So the graph of this function intercepts the
It intercepts the
Note that
f'(x) = 8x^3-52x = 2((2x)^2-26)x
So this quartic has local minima at:
x = +-sqrt(26)/2 ~~ +-5.1/2 = +-2.55
We find:
f(+-sqrt(26)/2) = 2(13/2)^2-26(13/2)+72 = 169/2-169+72 = -25/2
So this quartic function is a classic "W" shaped curve, symmetric about the
(-3, 0), (-sqrt(26)/2, -25/2), (-2, 0), (0, 72), (2, 0), (sqrt(26)/2, -25/2), (3, 0)
graph{2x^4-26x^2+72 [-10, 10, -20, 80]}