Let f(x)=x^2/(x^2+9)
f(-x)=x^2/(x^2+9)
f(x)=f(-x)
The curve is symmetric about the y-axis
The derivative of a quotient is
(u/v)'=(u'v-uv')/(v^2)
We start by calculating the first derivative
y=x^2/(x^2+9)
u=x^2, =>, u'=2x
v=x^2+9, =>, v'=2x
dy/dx=(2x(x^2+9)-2x(x^2))/(x^2+9)^2
=(2x^3+18x-2x^3)/(x^2+9)^2
=(18x)/(x^2+9)
The critical values are when dy/dx=0
(18x)/(x^2+9)^2=0
When x=0
We can build a chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaa)0color(white)(aaaaaa)+oo
color(white)(aaaa)dy/dxcolor(white)(aaaaaa)-color(white)(aaa)0color(white)(aaaa)+
color(white)(aaaa)ycolor(white)(aaaaaaaa)↘color(white)(aaa)0color(white)(aaaa)↗
Now, we calculate the second derivative
u=18x, =>, u'=18
v=(x^2+9)^2, =>, v'=2(x^2+9)*2x
(d^2y)/dx^2=(18(x^2+9)^2-18x*(4x(x^2+9)))/(x^2+9)^4
=18(((x^2+9)^2-4x^2(x^2+9)))/(x^2+9)^4
=(18(x^2+9)((x^2+9)-4x^2))/(x^2+9)^4
=(18(9-3x^2))/(x^2+9)^3
=(54(3-x^2))/(x^2+9)^3
(d^2y)/dx^2=0 when x =-sqrt3 and x=sqrt3
The points of inflexions are (-sqrt3, 1/4) and (sqrt3,1/4)
We can build the chart
color(white)(aa)Intervalcolor(white)(aaaa)]-oo,-sqrt3[color(white)(aaaa)]-sqrt3,sqrt3[color(white)(aaaa)]sqrt3,+oo[
color(white)(aa)(d^2y)/dx^2color(white)(aaaaaaaaaaaaa)-color(white)(aaaaaaaaaaaa)+color(white)(aaaaaaaaa)-
color(white)(aa)ycolor(white)(aaaaaaaaaaaaaaaa)nncolor(white)(aaaaaaaaaaaa)uucolor(white)(aaaaaaaaa)nn
lim_(x->+-oo)y=lim_(x->+-oo)x^2/x^2=1
The horizontal asymptote is y=1
graph{(y-(x^2)/(x^2+9))(y-1)=0 [-7.02, 7.024, -3.51, 3.51]}