f(x)=(x+1)/(sqrt(5x^2+35))
Vertical asymptote is in the point where it isn't defined that is:
sqrt(5x^2+35)!=0
5x^2+35!=0
x^2!=-35/5
x!=sqrt(-35/5)
As you can see this is absolute nonsense. That can't be done. Square root must be >0. That means it doesn't have a vertical asymptote and The Domain is RR
In order to determine maximum and minimum we need first derivative:
f(x)=(x+1)/(sqrt(5x^2+35))
f^'(x)=((x+1)^'(sqrt(5x^2+35))-(x+1)((5x^2+35)^(1/2))^')/(sqrt(5x^2+35))^2
f^'(x)=(1*sqrt(5x^2+35)-(x+1)((1*10x))/(2sqrt(5x^2+35)))/(sqrt(5x^2+35))^2
f^'(x)=((2(sqrt(5x^2+35))^2-10x(x+1))/(2sqrt(5x^2+35)))/(sqrt(5x^2+35))^2
f^'(x)=(2(5x^2+35)-10x(x+1))/(2(sqrt(5x^2+35))^3
f^'(x)=(cancel(10x^2)+2*35cancel(-10x^2)-2*5x)/(2(sqrt(5x^2+35))^3
f^'(x)=(cancel2(35-5x))/(cancel2(sqrt(5x^2+35))^3
f^'(x)=(5(7-x))/(sqrt(5x^2+35))^3
sqrt(5x^2+35) is always positive so we don't care about that. However (7-x) can be + and -
x in (-oo,7) hArr f^'(x) >0 => f goes up
x in (7,oo) hArr f^'(x) <0 => f goes down
maximum is in x=7quadf(7)=(7+1)/(sqrt(5*(7)^2+35))=8/(sqrt(280))=4/sqrt70~~0.478
function doesn't have minimum
horizontal asymptote: Lim_(xrarr+-oo)f(x)
1. for +oo
Lim_(xrarroo)(cancelx(1+1/x))/(cancelx(sqrt(5+35/(x^2))))=Lim_(xrarroo)(1+1/x)/(sqrt(5+35/(x^2)))=(1+0)/(sqrt(5+0))=1/sqrt5~~0.447
- for -oo
Lim_(xrarr-oo)f(x)="by implementing L'Hopitals rule we get"=Lim_(xrarr-oo)(sqrt(5x^2+35)*5x)=-oo
Intercepts:
if x=0quad=>quad y=1/sqrt35
if y=0quad=>quad 0=x+1quad=>quadx=-1