How do you simplify (x^2-y^2)/(8y-8x)x2y28y8x?

1 Answer
May 27, 2017

See a solution process below:

Explanation:

First, factor the numerator using this rule:

a^2 - b^2 = (a + b)(a - b)a2b2=(a+b)(ab)

(x^2 - y^2)/(8y - 8x) => ((x + y)(x - y))/(8y - 8x)x2y28y8x(x+y)(xy)8y8x

Next, factor a color(red)(-8)8 out of the denominator:

((x + y)(x - y))/((-8 xx - y) + (-8 xx x)) => (x+y)(xy)(8×y)+(8×x)

((x + y)(x - y))/(-8(-y + x)) => (x+y)(xy)8(y+x)

((x + y)(x - y))/(-8(x - y))(x+y)(xy)8(xy)

Now, cancel the common terms in the numerator and the denominator:

((x + y)color(red)(cancel(color(black)((x - y)))))/(-8color(red)(cancel(color(black)((x - y))))) =>

(x + y)/-8

-(x + y)/8