How do you simplify the factorial expression ((2n-1)!)/((2n+1)!)(2n1)!(2n+1)!?

1 Answer
Feb 8, 2017

((2n-1)!)/((2n+1)!) = 1/((2n+1)(2n))(2n1)!(2n+1)!=1(2n+1)(2n)

Explanation:

Remember that:

n! =n(n-1)(n-2)...1

And so

(2n+1)! =(2n+1)(2n)(2n-1)(2n-2) ... 1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=(2n+1)(2n)(2n-1)!

So we can write:

((2n-1)!)/((2n+1)!) = ((2n-1)!)/((2n+1)(2n)(2n-1)!)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =1/((2n+1)(2n))

Example: n=10

LHS = (19!)/(21!) \ \ \ \ \ = 1/420
RHS = 1/(21*20) = 1/420