How do you simplify the factorial expression #(10!)/(8!)#?

1 Answer
Feb 7, 2017

#90.#

Explanation:

Recall that, #(n!)=n(n-1)(n-2)...3xx2xx1,#

#=n{(n-1)(n-2)(n-3)...3xx2xx1}#

#rArr (n!)=n{(n-1)!}...............(ast)#

#:. (10!)/(8!)={10(9!)}/(8!), ...............[because, (ast)]#

#=[(10){9(cancel(8!))}]/cancel(8!)#

#=(10)(9)#

#=90.#