How do you simplify (sqrt(20x^4)sqrt(5x))/(sqrt(4x^3))20x45x4x3?

1 Answer
Apr 9, 2015

sqrt(20x^4) = (2x)(x)*sqrt(5)20x4=(2x)(x)5
sqrt(5x) = sqrt(5)*sqrt(x)5x=5x
sqrt(4x^3) = (2x)*sqrt(x)4x3=(2x)x

So (sqrt(20x^4)sqrt(5x))/sqrt(4x^3)20x45x4x3
can be written as
((2x)(x)(sqrt(5))(sqrt(5))(sqrt(x)))/((2x)(sqrt(x))(2x)(x)(5)(5)(x)(2x)(x)

Simplifying:
((cancel(2x))(x)(sqrt(5))(sqrt(5))(cancel(sqrt(x))))/(cancel((2x))(cancel(sqrt(x)))
and combining the two sqrt(5) components:

(sqrt(20x^4)sqrt(5x))/sqrt(4x^3) = 5x