How do you simplify # root8(-1066)#?
1 Answer
#root(8)(-1066) =1/2 root(8)(1066)sqrt(2+sqrt(2))+(1/2 root(8)(1066)sqrt(2-sqrt(2))) i#
Explanation:
First note that
I will use:
#cos(pi/8) = 1/2sqrt(2+sqrt(2))#
#sin(pi/8) = 1/2sqrt(2-sqrt(2))#
#(cos theta + i sin theta)^n = (cos n theta + i sin n theta) " "# (de Moivre)
So we find:
#root(8)(-1066) = (1066(cos pi + i sin pi))^(1/8)#
#=root(8)(1066)(cos pi + i sin pi)^(1/8)#
#=root(8)(1066)(cos (pi/8) + i sin (pi/8))#
#=root(8)(1066)cos(pi/8)+(root(8)(1066)sin(pi/8)) i#
#=1/2 root(8)(1066)sqrt(2+sqrt(2))+(1/2 root(8)(1066)sqrt(2-sqrt(2))) i#
Note that this is the principal
#cos (pi/4) + i sin (pi/4) = sqrt(2)/2 + (sqrt(2)/2)i#