How do you simplify (n!)/((n-2)!)n!(n2)!?

2 Answers
Nov 2, 2016

This can be simplified to n(n - 1) = n^2- nn(n1)=n2n.

Explanation:

Expand the factorial in the numerator, using the definition that n! = (n)(n - 1)(n - 2)(n - 3)....

(n!)/((n - 2)!)

=>((n)(n - 1)(n - 2)!)/((n -2)!)

=>n(n - 1)

=>n^2- n

Hopefully this helps!

Nov 2, 2016

Please see the explanation to understand how it simplifies to n(n -1)

Explanation:

(n!)/((n -2)!) = ((n)(n-1)(n-2)!)/((n-2)!) =

Cancel:

((n)(n-1)cancel(n-2)!)/(cancel(n-2)!) = n(n -1)