How do you simplify ((6x^2)^2)/(xy^3)*(4x^2y)^2/( xy^2)?

1 Answer
Aug 2, 2015

color(red)(((6x^2)^2)/(xy^3)·((4x^2y)^2)/(xy^2) =(576x^6)/y^3)

You must apply the outside exponent to everything inside the parentheses.

Remember that (x^m)^n=x^(mn).

((6x^2)^2)/(xy^3)·((4x^2y)^2)/(xy^2) = (36x^4)/(xy^3) · (16x^4y^2)/(xy^2)

We can immediately cancel the y^2 term.

(36x^4)/(xy^3)·(16x^4color(red)(cancel(color(black)(y^2))))/(xcolor(red)(cancel(color(black)(y^2)))) = (36x^4)/(xy^3) · (16x^4)/x

Now we multiply the two fractions.

Remember that x^mx^n = x^(m+n)

(36x^4)/(xy^3) · (16x^4)/x = (576x^8)/(x^2y^3)

And now we do our divisions.

Remember that x^m/x^n = x^(m-n)

(576x^8)/(x^2y^3) = (576x^6)/y^3

((6x^2)^2)/(xy^3)·((4x^2y)^2)/(xy^2) =(576x^6)/y^3