How do you simplify (5sqrt2+3sqrt5)(2sqrt10-5)(52+35)(2105)?

2 Answers
Mar 24, 2017

=5(sqrt5 +sqrt2)=5(5+2)

Explanation:

You can multiply the brackets using the distributive law, in exactly the same way as in cases such as:

(x+3)(x-4) = x^2 -4x +3x-12(x+3)(x4)=x24x+3x12

Each term in the first bracket must be multiplied by each term is the second bracket.

(color(red)(5sqrt2) +color(blue)(3sqrt5))(2sqrt10-5)(52+35)(2105)

=color(red)(5sqrt2)(2sqrt10-5) +color(blue)(3sqrt5)(2sqrt10-5)=52(2105)+35(2105)

=10sqrt20-25sqrt2+6sqrt50-15sqrt5=1020252+650155

Now find factors for the roots, using squares where possible:

=10sqrt(color(magenta)(4)xx5)-25sqrt2+6sqrt((color(lime)25xx2)-15sqrt5=104×5252+6(25×2)155

=10xxcolor(magenta)(2)sqrt5-25sqrt2+6 xxcolor(lime)5sqrt2 -15sqrt5=10×25252+6×52155

=20sqrt5 -15sqrt5+30sqrt2-25sqrt2=205155+302252

=5sqrt5+5sqrt2=55+52

=5(sqrt5 +sqrt2)=5(5+2)

Mar 24, 2017

5(sqrt2+sqrt5)5(2+5)

Explanation:

(5sqrt2+3sqrt5)(2sqrt10-5)(52+35)(2105)

color(white)(aaaaaaaaaaaaa)aaaaaaaaaaaaa5sqrt2+3sqrt552+35
color(white)(aaaaaaaaaaaaa)aaaaaaaaaaaaa2sqrt10-52105
color(white)(aaaaaaaaaaaaa)aaaaaaaaaaaaa-----
color(white)(aaaaaaaaaaaaa)aaaaaaaaaaaaa10sqrt2sqrt10+6sqrt5sqrt1010210+6510
color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa-25sqrt2-15sqrt5252155
color(white)(aaaaaaaaaaaaa)aaaaaaaaaaaaa-------------
color(white)(aaaaaaaaaaaa)aaaaaaaaaaaacolor(blue)(10sqrt2sqrt10+6sqrt5sqrt10-25sqrt2-15sqrt510210+6510252155

:.=10sqrt2 xx sqrt2 xx sqrt5+6sqrt5 xx sqrt2 xx sqrt5-25sqrt2-15sqrt5

:.=10 xx 2sqrt5+6 xx 5 xx sqrt2-25sqrt2-15sqrt5

:.=20sqrt5+30sqrt2-25sqrt2-15sqrt5

:.=20sqrt5-15sqrt5+30sqrt2-25sqrt2

:.=5sqrt5+5sqrt2

:.color(blue)(=5(sqrt2+sqrt5)