There is a neat method which might be of use in this fraction.
# 1/(x/y) = y/x" " and " "(a/b)/(c/d) = (ad)/(bc)#
Let's do this bit-by-bit....
#(3 + 1/(x + (color(red)(1/(x + 2/x)))))/(3/(x + 2))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Simplify the red part:
#color(red)(x/1 + 2/x) = color(red)((x^2+2)/x)" " rArr color(red) (1/((x^2+2)/x) = x/(x^2+2))#
Now we have:
#(3 + 1/(x + (color(red)(x/(x^2+2)))))/(3/(x + 2))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#(3 + 1/color(blue)(x + (x/(x^2+2))))/(3/(x + 2))#
Simplify the blue part:
#color(blue)[x/1 + x/(x^2+2) = (x^3 + 2x+x)/(x^2+2) = (x^3 + 3x)/(x^2+2)]#
#color(blue)(1/(x + (x/(x^2+2)))= (x^2+2)/(x^3+3x) #
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now we have:
#[3 + color(blue)((x^2+2)/(x^3+3x))]/(3/(x + 2))#
#color(green)((3 + (x^2+2)/(x^3+3x))]/(3/(x + 2))#
Simplify the green part:
#color(green)((3 /1+ (x^2+2)/(x^3+3x))]#
=#color(green)((3x^3+9x+x^2+2)/(x^3+3x) = (3x^3+9x+x^2+2)/(x(x^2+3))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now we have
#((3x^3+9x+x^2+2)/(x(x^2+3)))/(3/(x + 2))#
=#((3x^3+9x+x^2+2)(x+2))/(3x(x^2+3)#
Would this simplify further?