How do you simplify #(2)/(x) + (2)/(x-1) - (2)/(x-2) #?

2 Answers
Mar 19, 2017

#(6x^2-12x+4)/(x^3-3x^2+2x)#

Explanation:

The idea is to get everything into one big fraction by multiplying everything by the common denominator. In this case, the common denominator is #x(x-1)(x-2)#. So, just like with regular fractions, we can multiply the numerator and denominator of each fraction to get them to have a common denominator.

#2/x + 2/(x-1) + 2/(x-2)#

#(2(x-1)(x-2))/(x(x-1)(x-2)) + (2(x)(x-2))/(x(x-1)(x-2)) + (2(x)(x-1))/(x(x-1)(x-2))#

#(2x^2-6x+4)/(x^3-3x^2+2x)+(2x^2-4x)/(x^3-3x^2+2x) + (2x^2-2x)/(x^3-3x^2+2x)#

#(6x^2-12x+4)/(x^3-3x^2+2x)#

Final answer

Mar 21, 2017

#(2(x^2-4x+2))/(x(x^2-3x+2))#

Explanation:

#2/x+2/(x-1)-2/(x-2)#

#:.=(2(x-1)(x-2)+2x(x-2)-2x(x-1))/(x(x-1)(x-2))#

#:.=(2(x^2-3x+2)+2x^2-4x-2x^2+2x)/(x(x^2-3x+2))#

#:.=(2x^2-6x+4+2x^2-4x-2x^2+2x)/(x(x^2-3x+2))#

#:.=(2x^2-8x+4)/(x(x^2-3x+2))#

#:.=(2(x^2-4x+2))/(x(x^2-3x+2))#