How do you rationalize the denominator: 3/sqrt333?

2 Answers
Mar 7, 2018

sqrt33

Explanation:

This means that you do not want an irrational number (surd) in the denominator

3/sqrt3 xx sqrt3/sqrt3" "larr sqrt3/sqrt3 =133×33 33=1

=(3sqrt3)/(sqrt3^2)=3332

=(cancel3sqrt3)/cancel3

=sqrt3

Mar 7, 2018

3/sqrt3=color(blue)((3sqrt3)/3

Explanation:

Given:

sqrt3

Rationalize the denominator by multiplying the numerator and denominator by sqrt3.

(3*sqrt3)/(sqrt3sqrt3)

Apply the rule sqrtasqrta=a.

(3sqrt3)/3

Simplify.

(color(red)cancel(color(black)(3))^1sqrt3)/color(red)cancel(color(black)(3))^1

sqrt3 larr answer