How do you multiply sqrt(2xy^3)*sqrt(4x^2y^7)2xy34x2y7?

2 Answers
Mar 24, 2015

You can take one big root:
sqrt(2*4x^(1+2)y^(3+7))=sqrt(2*4*x^3y^10)=(2*2^2x^3y^10)^(1/2)=24x1+2y3+7=24x3y10=(222x3y10)12=
=2^(1/2)*2^(2*1/2)x^(3*1/2)y^(10*1/2)==2122212x312y1012=
where you used the fact that sqrt(x)=x^(1/2)x=x12
=2xy^5sqrt(2x)=2xy52x

Mar 24, 2015

Remember that if the exponents of two radicals are equal the arguments of the radicals can be multiplied under the same radical exponent.
That is
root(a)(b) xx root(a)(c) = root(a)(b xx c)ab×ac=ab×c

So
sqrt(2xy^3) * sqrt(4x^2y^7)2xy34x2y7

= sqrt( 8x^3y^10)=8x3y10

In this particular example some roots can be extracted:
sqrt(8x^3y^10) = sqrt(color(red)(2)^2(2)* (color(red)(x)^2) (x) * (color(red)(y^5)^2)8x3y10=22(2)(x2)(x)(y52)

= color(red)(2xy^5) sqrt(2x)=2xy52x