How do you multiply imaginary numbers of the form a + bi?

1 Answer
Nov 29, 2015

See explanation

Explanation:

color(blue)("Comment")

Example
("Real part" + "Imaginary part") ->(Re+Im)-> (6+12i)
Notice that I keep the brackets. This is important as the 'Real' part,6, contributes to the whole. As does the Imaginary part of 12i. So together they are the whole of something.

'---------------------------------------

The distributive law applies

color(blue)("Case 1")color(white)(....) cxx(a+bi)

Write as : (cxxa)+(cxxb)i-> (ca+cbi)

Using the actual numbers previously chosen at random:

3(2+6i)-> (6+12i)

'--------------------------------------------------
color(blue)("Case 2")color(white)(....) (a+bi)(c+di)

This would be easier to demonstrate with numbers

Suppose we had: (2+i)(3+4i)

2(3+4i) +i(3+4i)

6+8i+3i+4i^2

6+11i+4i^2

But i=sqrt(-1)" so " i^2=(-1)

6+11i+4(-1)

2+11i
'-----------------------------------------------