Using Euler's formula
#color(white)("XXX")e^((9pi)/8i) = cos((9pi)/8)+i * sin((9pi)/8)#
#color(white)("XXXXX")=cos(pi+pi/8)+i * sin(pi+pi/8)#
#color(white)("XXXXX")=-cos(pi/8)+i * (-sin(pi/8))#
#color(white)("XXXXX")=-cos(pi/8)- i * sin(pi/8)#
and
#color(white)("XXX")e^(pi/2i)=cos(pi/2)+ i * sin(pi/2)#
#color(white)("XXXXX")=0 + i * 1#
#color(white)("XXXXX")=i#
Therefore
#color(white)("XXX")e^((9pi)/8i) * e^(pi/2i) = [-cos(pi/8)- i * sin(pi/8)] * i#
#color(white)("XXXXXXX")=- i * cos(pi/8) - (-1) * sin(pi/8)#
#color(white)("XXXXXXX")=sin(pi/8)-icos(pi/8)#