How do you multiply #(2x - 3)(x^2 + 5^x - 3)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Alan P. Sep 15, 2015 #2x^3-3x^2+(2x-3)5^x-6x+9# #color(white)("XXXX")#(although one has to wonder if #5^x# wasn't meant to be #5x#) Explanation: #(color(red)(2x)-color(blue)(3))(x^2+5^x-3)# #=color(red)(2x)(x^2+5^x-3) -color(blue)(3)(x^2+5^x-3)# #=(color(red)(2x^3+2x*5^x-6x)) - (color(blue)(3x^2+3*5^x-9))# #=2x^3-3x^2+(2x-3)5^x-6x+9# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1283 views around the world You can reuse this answer Creative Commons License