How do you multiply #(2x^2-5x-1)(x^2+x-3)#?

1 Answer
Aug 5, 2015

#(2x^2-5x-1)(x^2+x-3)=2x^4-8x^3-12x^2+14x+3#

Explanation:

#(p)*(x^2+x-3) = (px^2+px-3p)#

Replacing #(p)# with #(2x^2-5x-1)#

#(2x^2-5x-1)(x^2+x-3)#
#color(white)("XXXX")##=(2x^2-5x-1)x^2 +(2x^2-5x-1)x - 3(2x^2-5x-1)#

#color(white)("XXXX")##=(2x^4-10x^3-x^2)+(2x^3-5x^2-x)-(6x^2-15x-3)#

#color(white)("XXXX")##=(2x^4) + (-10x^3+2x^3) + (-x^2-5x^2-6x^2) + (-x+15x) + (3)#

#color(white)("XXXX")##=2x^4-8x^3-12x^2+14x+3#