How do you long divide #(x^3-7x-6) div (x+1) #? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Konstantinos Michailidis May 23, 2016 The nominator can be factored as #x^3-7x-6=x^3-6x-x-6= x^3-x-6(x+1)= x(x-1)(x+1)-6(x+1)= (x+1)*[x(x-1)+6]# Hence #(x^3-7x-6)/(x+1)=(x+1)*[x(x-1)+6]/(x+1)= x*(x-1)+6=x^2-x+6# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1234 views around the world You can reuse this answer Creative Commons License