How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer sahar del Jun 22, 2018 #12x^3-11x^2+9x+18=(3x^2-5x+6)(4x+4)# Explanation: #12x^3-11x^2+9x+18=(3x^2-5x+6)(4x+4)# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to find the quotient of #x^3+2x^2-25x-50# divided by #x+5#? See all questions in Long Division of Polynomials Impact of this question 14967 views around the world You can reuse this answer Creative Commons License