How do you integrate #x5^(x^2) dx#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Cesareo R. Sep 3, 2016 #1/(2log_e5)5^(x^2)+C# Explanation: #d/(dx)(5^(x^2)) = 2 x log_e5 xx 5^(x^2)# then #int x5^(x^2) dx = 1/(2log_e5)int d/(dx)(5^(x^2)) = 1/(2log_e5)5^(x^2)+C# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 2667 views around the world You can reuse this answer Creative Commons License