How do you integrate #{x/(sqrt(4+4x^2))} dx# from 0 to 2? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Narad T. Feb 1, 2017 The answer is #=1/2(sqrt5-1)# Explanation: We need #intx^ndx=x^(n+1)/(n+1)+C(n!=-1)# Let #u=4+4x^2# #du=8xdx#, #xdx=1/8du# Therefore, #int(xdx)/sqrt(4+4x^2)=1/8int(du)/sqrtu=1/8u^(-1/2+1)/(1/2)# #=1/4sqrtu=1/4sqrt(4+4x^2)=1/2sqrt(1+x^2)# so, #int_0^2(xdx)/sqrt(4+4x^2)=[1/2sqrt(1+x^2)]_0^2# #=(sqrt5/2)-(1/2)# #=1/2(sqrt5-1)# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 5122 views around the world You can reuse this answer Creative Commons License