How do you evaluate the integral #int(1+x)^2 dx#?

1 Answer
Aug 15, 2014

#=x^3/3+x^2+x+C#, where #C# is a constant

Explanation :

#I=int(1+x)^2dx#

It can be solved by two methods,

#(I)#

using Integration by Substitution

let's #1+x=t# #=># #dx=dt#

then, #intt^2dt=t^3/3+c#

Substituting #t# back,

#=(1+x)^3/3+c#, where #c# is a constant

#=1/3(x^3+3x^2+3x+1)+c#, where #c# is a constant

#=x^3/3+x^2+x+1/3+c#, where #c# is a constant

#=x^3/3+x^2+x+C#, where #C# is again a constant

#(II)#

Expanding #(1+x)^2=x^2+2x+1#, we get

#int(x^2+2x+1)dx#

#=x^3/3+2x^2/2+x+c#, where #c# is a constant

#=x^3/3+x^2+x+c#, where #c# is a constant