How do you integrate #{x(sqrt(1+x^2)} dx# from 0 to 1? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Ratnaker Mehta Sep 22, 2016 #I=1/3(2sqrt2-1)#. Explanation: Let #I=int_0^1 {xsqrt(1+x^2)}dx.# We subst. #1+x^2=t^2 rArr 2xdx=2tdt, i.e., xdx=tdt# Further, #x=0 rArr t=1, and, x=1 rArr t=sqrt2#. #:. I=int_1^(sqrt2) t.tdt = int_1^(sqrt2) t^2dt=[t^3/3]_1^sqrt2#. #=1/3[sqrt2^3-1]#. #:. I=1/3(2sqrt2-1)#. Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 44516 views around the world You can reuse this answer Creative Commons License