How do you integrate x^3/ (x^2 -1) using partial fractions?

1 Answer
Jun 9, 2016

int x^3/(x^2-1) dx = int (x + 1/(2(x-1)) + 1/(2(x+1))) dx

=1/2(x^2 + ln(abs(x-1)) + ln(abs(x+1))) + C

Explanation:

x^3/(x^2-1)

= (x^3-x+x)/(x^2-1)

= (x(x^2-1)+x)/(x^2-1)

= x + x/(x^2-1)

= x + x/((x-1)(x+1))

= x + A/(x-1) + B/(x+1)

= x + (A(x+1)+B(x-1))/(x^2-1)

= x + ((A+B)x + (A-B))/(x^2-1)

Equating coefficients we find:

{ (A+B = 1), (A-B = 0) :}

Hence:

A = B = 1/2

So:

x^3/(x^2-1) = x + 1/(2(x-1)) + 1/(2(x+1))

So:

int x^3/(x^2-1) dx = int (x + 1/(2(x-1)) + 1/(2(x+1))) dx

=1/2(x^2 + ln(abs(x-1)) + ln(abs(x+1))) + C