Let us first convert (x^2-2x-1)/((x-1)^2(x^2+1)) to partial fractions. For this let
(x^2-2x-1)/((x-1)^2(x^2+1))hArrA/(x-1)+B/(x-1)^2+(Cx+D)/(x^2+1)
or (x^2-2x-1)/((x-1)^2(x^2+1))=(A(x-1)(x^2+1)+B(x^2+1)+(Cx+D)(x-1)^2)/((x-1)^2(x^2+1))
or (x^2-2x-1)=A(x-1)(x^2+1)+B(x^2+1)+(Cx+D)(x-1)^2
Putting x=1 in this we get 2B=-2 or B=-1
Comparing coefficient of highest degree i.e. x^3, we get A+C=0,
comparing constant term we get -A+B+D=-1 or -A+D=0 i.e. A=D
and comparing coefficient of x, -2=A-2D+C i.e. C-A=-2
as A+C=0, we get C=-1 and A=1 and hence
(x^2-2x-1)/((x-1)^2(x^2+1))=1/(x-1)-1/(x-1)^2-(x-1)/(x^2+1)
Hence int(x^2-2x-1)/((x-1)^2(x^2+1))dx
= intdx/(x-1)-intdx/(x-1)^2-int(x-1)/(x^2+1)dx
= ln|x-1|+1/(x-1)-1/2int(2x)/(x^2+1)dx+intdx/(x^2+1)
= ln|x-1|+1/(x-1)-1/2ln(x^2+1)+tan^(-1)x+c