How do you integrate (x^2-1)/(x^2-16) using partial fractions?

1 Answer
Dec 2, 2016

The answer is =x-15/8ln(∣x+4∣)+15/8ln(∣x-4∣)+C

Explanation:

Firstly

(x^2-1)/(x^2-16)=1+15/(x^2-16)

x^2-16=(x+4)(x-1)

Now we can do the decomposition in partial fractions

15/(x^2-16)=15/((x+4)(x-1))=A/(x+4)+B/(x-4)

=(A(x-4)+B(x+4))/((x+4)(x-1))

Therefore,

15=A(x-4)+B(x+4)

Let x=4, =>, 15=8B

B=15/8

Let x=-4, =>, 15=-8A

A=-15/8

(x^2-1)/(x^2-16)=1-15/(8(x+4))+15/(8(x-4)

int((x^2-1)dx)/(x^2-16)=int1dx-int(15dx)/(8(x+4))+int(15dx)/(8(x-4)

=x-15/8ln(∣x+4∣)+15/8ln(∣x-4∣)+C