How do you integrate int(x)/((x+4)(x+2)(2x-11)) using partial fractions?

1 Answer
Jul 28, 2016

int x/((x+4)(x+2)(2x-11)) dx

= -2/19 ln(abs(x+4)) + 1/15 ln(abs(x+2)) + 11/285 ln(abs(2x-11)) + C

Explanation:

x/((x+4)(x+2)(2x-11)) = A/(x+4)+B/(x+2)+C/(2x-11)

Use Heaviside's cover up method to find:

A = (-4)/(((-4)+2)(2(-4)-11)) = (-4)/((-2)(-19)) = -2/19

B = (-2)/(((-2)+4)(2(-2)-11)) = (-2)/((2)(-15)) = 1/15

C = (11/2)/(((11/2)+4)((11/2)+2)) = 22/((11+8)(11+4)) = 22/285

So:

int x/((x+4)(x+2)(2x-11)) dx

= int (-2/(19(x+4))+1/(15(x+2))+22/(285(2x-11))) dx

= -2/19 ln(abs(x+4)) + 1/15 ln(abs(x+2)) + 11/285 ln(abs(2x-11)) + C

Notice the coefficient 11/285, not 22/285. When differentiated, the 2x results in a factor 2.