To integrate, we should first convert (x-9)/((x+3)(x-7)(x+4)) in to partial fractions. Let
(x-9)/((x+3)(x-7)(x+4))hArrA/(x+3)+B/(x-7)+C/(x+4). Simplifying RHS
=[A(x-7)(x+4)+B(x+3)(x+4)+C(x+3)(x-7)]/((x+3)(x-7)(x+4)) or
=[A(x^2-3x-28)+B(x^2+7x+12)+C(x^2-4x-21)]/((x+3)(x-7)(x+4))
=[(A+B+C)x^2+(-3A+7B-4C)x+(-28A+12B-21C)]/((x+3)(x-7)(x+4))
Hence A+B+C=0, -3A+7B-4C=1 and -28A+12B-21C=-9
Solving these will give us A=132/110, B=-2/110 and C=-13/11
Hence (x-9)/((x+3)(x-7)(x+4))hArr132/(110(x+3))-2/(110(x-7))-13/(11(x+4))
Hence int(x-9)/((x+3)(x-7)(x+4))dx =
int[132/(110(x+3))-2/(110(x-7))-13/(11(x+4))]dx
or
Now one can use the identity int(1/(ax+b))dx=1/aln(ax+b)
Hence, int[132/(110(x+3))-2/(110(x-7))-13/(11(x+4))]dx
= 132/110ln(x+3)-2/110ln(x-7)-13/11ln(x+4)+c