How do you integrate int (x+5)/((x+3)(x-2)(x-7)) using partial fractions?

1 Answer
Oct 5, 2017

The answer is =1/25ln(|x+3|)-7/25ln(|x-2|)+6/25ln(|x-7|)+C

Explanation:

Perform the decomposition into partial fractions

(x+5)/((x+3)(x-2)(x-7))=A/(x+3)+B/(x-2)+C/(x-7)

=(A(x-2)(x-7)+B(x+3)(x-7)+C(x+3)(x-2))/((x+3)(x-2)(x-7))

The denominators are the same, compare the numerators

(x+5)=(A(x-2)(x-7)+B(x+3)(x-7)+C(x+3)(x-2))

Let x=-3, =>, 2=50A, A=1/25

Let x=2, =>, 7=-25B, B=-7/25

Let x=7, =>, 12=50C, C=6/25

Therefore,

(x+5)/((x+3)(x-2)(x-7))=(1/25)/(x+3)+(-7/25)/(x-2)+(6/25)/(x-7)

So, the integral is

int((x+5)dx)/((x+3)(x-2)(x-7))=int(1/25dx)/(x+3)+int(-7/25dx)/(x-2)+int(6/25dx)/(x-7)

=1/25ln(|x+3|)-7/25ln(|x-2|)+6/25ln(|x-7|)+C