How do you integrate int (x-3x^2)/((x-6)(x-2)(x+4)) using partial fractions?

1 Answer
Jan 9, 2017

The answer is =-51/20ln(∣x-6∣)+5/12ln(∣x-2∣)-13/15ln(∣x+4∣)+C

Explanation:

Let's perform the decomposition into partial fractions

(x-3x^2)/((x-6)(x-2)(x+4))=A/(x-6)+B/(x-2)+C/(x+4)

=(A(x-2)(x+4)+B(x-6)(x+4)+C(x-6)(x-2))/((x-6)(x-2)(x+4))

Therefore,

x-3x^2=A(x-2)(x+4)+B(x-6)(x+4)+C(x-6)(x-2)

Let x=6, =>, -102=40A, =>, A=-51/20

Let x=2, =>, -10=-24B, =>, B=5/12

Let x=-4, =>, -52=60C, =>, C=-13/15

So,

(x-3x^2)/((x-6)(x-2)(x+4))=(-51/20)/(x-6)+(5/12)/(x-2)+(-13/15)/(x+4)

Therefore,

int((x-3x^2)dx)/((x-6)(x-2)(x+4))=-51/20intdx/(x-6)+5/12intdx/(x-2)-13/15intdx/(x+4)

=-51/20ln(∣x-6∣)+5/12ln(∣x-2∣)-13/15ln(∣x+4∣)+C