How do you integrate int (x-3x^2)/((x+3)(x-1)(x-7)) using partial fractions?

1 Answer
Sep 27, 2016

=-3/4In(x+3)+1/12In(x-1)-7/3In(x-7)

Explanation:

first ,ignore the integrate sign and do partial fraction of the function

(x-3x^2)/((x+3)(x-1)(x-7))=A/(x+3)+B/(x-1)+C/(x-7)

x-3x^2=A(x-1)(x-7))+B(x+3)(x-7))+C(x+3)(x-1)

subtitute x=-3

(-3)-3(-3)^2=A(-3-1)(-3-7)

-3-27=A(-4)(-10)

-30=40A

A=-3/4

subtitute x=1

(1)-3(1)^2=B(1+3)(1-7)

-2=B(4)(-6)

-2=-24B

B=1/12

subtitute x=7

(7)-3(7)^2=C(7+3)(7-1)

7-147=C(10)(6)

-140=60C

C=-7/3

int(x-3x^2)/((x+3)(x-1)(x-7))

=int-3/(4(x+3))+1/(12(x-1))-7/(3(x-7))

=-3/4int1/(x+3)+1/12int1/(x-1)-7/3int1/(x-7)

=-3/4In(x+3)+1/12In(x-1)-7/3In(x-7)