How do you integrate int (x^3-x^2)/ (x+3)^4 using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Roy E. Jan 18, 2017 ln|x+3| +10/(x+3)-33/(2(x+3)^2)+12/(x+3)^3+c Explanation: Let u=x+3, (du)/(dx)=1. int((u-3)^3-(u-3)^2)/u^4 du =int(u^3-10u^2+33u-36)/u^4du =int u^-1-10u^-2+33u^-3-36u^-4dx =ln|u|+10/u-33/(2u^2)+12/u^3+c Answer link Related questions How do I find the partial fraction decomposition of (2x)/((x+3)(3x+1)) ? How do I find the partial fraction decomposition of (1)/(x^3+2x^2+x ? How do I find the partial fraction decomposition of (x^4+1)/(x^5+4x^3) ? How do I find the partial fraction decomposition of (x^4)/(x^4-1) ? How do I find the partial fraction decomposition of (t^4+t^2+1)/((t^2+1)(t^2+4)^2) ? How do I find the integral intt^2/(t+4)dt ? How do I find the integral int(x-9)/((x+5)(x-2))dx ? How do I find the integral int1/((w-4)(w+1))dw ? How do I find the integral intdx/(x^2(x-1)^2) ? How do I find the integral int(x^3+4)/(x^2+4)dx ? See all questions in Integral by Partial Fractions Impact of this question 1623 views around the world You can reuse this answer Creative Commons License