How do you integrate int (x^3+x^2+x+2)/(x^4+x^2) using partial fractions?

How do you integrate int (x^3+x^2+x+2)/(x^4+x^2)dx using partial fractions?

1 Answer
Aug 28, 2016

ln|x|-2/x-arc tanx+C

Explanation:

Let I=int(x^3+x^2+x+2)/(x^4+x^2)dx=int(x^3+x^2+x+2)/(x^2(x^2+1))dx

On the first hand inspection, we find that we have no go but to use

the Method of Partial Fraction to decompose the Integrand, but,

"The Nr."

=(x^3+x^2+x+2)=ul(x^3+x)+ul(x^2+1)+1

=x(x^2+1)+1(x^2+1)+1=(x^2+1)(x+1)+1.

Hence, (x^3+x^2+x+2)/(x^2(x^2+1))={(x^2+1)(x+1)+1}/(x^2(x^2+1))

={(x^2+1)(x+1)}/ (x^2(x^2+1))+1/(x^2(x^2+1))

=((x^2+1)(x+1))/(x^2(x^2+1))+1/(x^2(x^2+1))

=(x+1)/x^2+{(x^2+1)-x^2)/(x^2(x^2+1)

=x/x^2+1/x^2+(x^2+1)/(x^2(x^2+1))-x^2/(x^2(x^2+1)

=1/x+1/x^2+1/x^2-1/(x^2+1).

Therefore,

I=int[1/x+2/x^2-1/(x^2+1)]dx

=ln|x|-2/x-arc tanx+C

Enjoy maths.!