How do you integrate int (x^3)/(x^2 + 8x + 16) using partial fractions?

1 Answer
Feb 1, 2017

1/2x^2-8x+48ln|x+4|+64/(x+4)+c

Explanation:

The denominator is a perfect square, so you don't use partial fractions. Instead, you substitute u=x+4. The integral becomes:
int(u-4)^3/u^2 du

=int(u^3-12u^2+48u-64)/u^2du

=intu-12+48/u-64/u^2du

=1/2u^2-12u+48ln|u|+64/u+k

=1/2(x+4)^2-12(x+4)+48ln|x+4|+64/(x+4)+k

=1/2x^2-8x+48ln|x+4|+64/(x+4)+c

(where c=8-48+k)