Here,
I=int((x-3)(x-1))/(-x(x-5))dxI=∫(x−3)(x−1)−x(x−5)dx
=-int(x^2-4x+3)/(x^2-5x=−∫x2−4x+3x2−5x
=-int(x^2-5x+x+3)/(x^2-5x)=−∫x2−5x+x+3x2−5x
=-int(x^2-5x)/(x^2-5x)dx-int(x+3)/(x^2-5x)dx=−∫x2−5xx2−5xdx−∫x+3x2−5xdx
=-int1dx-int(x+3)/(x(x-5))dx=−∫1dx−∫x+3x(x−5)dx
I=-x-I_1...to(D)
We try to obtain Partial Fractions for I_1
(x+3)/(x(x-5))=A/x+B/(x-5)
x+3=A(x-5)+Bx
x=0=>3=A(-5)=>A=-3/5
x=5=>5+3=5B=>B=8/5
So
I_1=int(-3/5)/xdx+int(8/5)/(x-5)dx
I_1=-3/5int1/xdx+8/5int1/(x-5)dx
I_1=-3/5ln|x|+8/5ln|x-5|+c
Thus, from (D),we get
I=-x-{-3/5ln|x|+8/5ln|x-5|}+C
I=-x+3/5ln|x|-8/5ln|x-5|+C