How do you integrate int ((x-3)(x-1))/(-x(x-5)) dx(x3)(x1)x(x5)dx using partial fractions?

1 Answer
May 18, 2018

I=-x+3/5ln|x|-8/5ln|x-5|+CI=x+35ln|x|85ln|x5|+C

Explanation:

Here,

I=int((x-3)(x-1))/(-x(x-5))dxI=(x3)(x1)x(x5)dx

=-int(x^2-4x+3)/(x^2-5x=x24x+3x25x

=-int(x^2-5x+x+3)/(x^2-5x)=x25x+x+3x25x

=-int(x^2-5x)/(x^2-5x)dx-int(x+3)/(x^2-5x)dx=x25xx25xdxx+3x25xdx

=-int1dx-int(x+3)/(x(x-5))dx=1dxx+3x(x5)dx

I=-x-I_1...to(D)

We try to obtain Partial Fractions for I_1

(x+3)/(x(x-5))=A/x+B/(x-5)

x+3=A(x-5)+Bx

x=0=>3=A(-5)=>A=-3/5

x=5=>5+3=5B=>B=8/5

So

I_1=int(-3/5)/xdx+int(8/5)/(x-5)dx

I_1=-3/5int1/xdx+8/5int1/(x-5)dx

I_1=-3/5ln|x|+8/5ln|x-5|+c

Thus, from (D),we get

I=-x-{-3/5ln|x|+8/5ln|x-5|}+C

I=-x+3/5ln|x|-8/5ln|x-5|+C