How do you integrate int (x^3-3x^2-9)/(x^3-3x^2) dx using partial fractions?

1 Answer
Mar 1, 2017

The answer is =x-3/x+ln(|x|)-ln(|x-3|)+C

Explanation:

We factorise the denominator

x^3-3x^2=x^2(x-3)

We start by performing a polynomial long division

color(white)(aaaa)x^3-3x^2color(white)(aaaaaa)-9color(white)(aaaa)|x^3-3x^2

color(white)(aaaa)x^3-3x^2color(white)(aaaaaa)#color(white)(aaaaaaa)|#1

color(white)(aaaaaa)0-0color(white)(aaaaaa)-9color(white)(aaaa)

Therefore,

(x^3-3x^2)/(x^3-3x^2)=1-9/(x^2(x-3))

Now, we perform the partial fraction decomposition

9/(x^2(x-3))=A/(x^2)+B/(x)+C/(x-3)

=(A(x-3)+B(x(x-3))+C(x^2))/(x^2(x-3))

The denominators are the same, we compare the numerators

9=A(x-3)+B(x(x-3))+C(x^2)

Let x=0,=>,9=-3A, =>, A=-3

Let x=3, =>, 9=9C, =>,C=1

Coefficients of x^2

0=B+C, =>, B=-C=-1

Therefore,

9/(x^2(x-3))=-3/(x^2)-1/(x)+1/(x-3)

So,

(x^3-3x^2)/(x^3-3x^2)=1-(-3/(x^2)-1/(x)+1/(x-3))

=1+3/(x^2)+1/(x)-1/(x-3)

Then,

int((x^3-3x^2)dx)/(x^3-3x^2)=int1dx+3intdx/(x^2)+intdx/(x)-intdx/(x-3)

=x-3/x+ln(|x|)-ln(|x-3|)+C