How do you integrate int(x^3+1)/((x^2-4)(x^2+1)) dx using partial fractions?

1 Answer
May 12, 2017

int(x^3+1)/((x^2-4)(x^2+1))

= 9/20ln|x-2|+7/20ln|x+2|+1/10ln|x^2+1|+1/5tan^(-1)x

Explanation:

As (x^3+1)/((x^2-4)(x^2+1))=(x^3+1)/((x-2)(x+2)(x^2+1))

Let (x^3+1)/((x^2-4)(x^2+1))=A/(x-2)+B/(x+2)+(Cx+D)/(x^2+1)

or (x^3+1)=A(x+2)(x^2+1)+B(x-2)(x^2+1)+(Cx+D)(x+2)(x-2)

when x=2 we have 9=20A i.e. A=9/20

when x=-2 we have -7=-20B i.e. B=7/20

Comparing coefficients of x^3 and constant term we get

1=A+B+C i.e. C=1-A-B=1-9/20-7/20=4/20=1/5

and 1=2A-2B-4D i.e. D=-(1-18/20+14/20)/4=1/5

Hence (x^3+1)/((x^2-4)(x^2+1))=9/(20(x-2))+7/(20(x+2))+(x+1)/(5(x^2+1)) and

int(x^3+1)/((x^2-4)(x^2+1))dx

= int9/(20(x-2))dx+int7/(20(x+2))dx+int(x+1)/(5(x^2+1))dx

= 9/20ln|x-2|+7/20ln|x+2|+1/5(1/2int(2x)/(x^2+1)dx+int1/(x^2+1)dx)

= 9/20ln|x-2|+7/20ln|x+2|+1/10ln|x^2+1|+1/5tan^(-1)x