How do you integrate int (x^3+1) / (x^2+4) using partial fractions?

1 Answer

x^2/2+1/{2}\tan^{-1}(x/2)-2\ln(x^2+4)+C

Explanation:

Given that

\int \frac{x^3+1}{x^2+4}\ dx

=\int(x-\frac{4x}{x^2+4}+\frac{1}{x^2+4})\ dx

=\int\ x\ dx-\int \frac{4x}{x^2+4}\ dx+\int \frac{1}{x^2+4}\ dx

=x^2/2-2\int \frac{d(x^2+4)}{x^2+4}\ dx+\int \frac{1}{x^2+2^2}\ dx

=x^2/2-2\ln|x^2+4|+1/{2}\tan^{-1}(x/2)+C

=x^2/2+1/{2}\tan^{-1}(x/2)-2\ln(x^2+4)+C