How do you integrate int(x^2) / ( x^2 + 3x +2) dx using partial fractions?

1 Answer
Dec 3, 2015

int (x^2)/(x^2 +3x+2)dx = x- 4 ln |x+2| + ln|x+1| +C

Explanation:

Original
int x^2/(x^2+3x+2)dx " " " " " " (1)

Step 1: Rewrite the expression as a proper fraction (using long division)

((x^2)/(x^2 + 3x+2)) = 1 -(3x+2)/(x^2 +3x+2) " " " " " (2)

int 1dx -int((3x+2)/(x^2 +3x+2))dx " " " " " " "(3)

Step 2: Factor the denominator (3)

(3x+2)/(x^2 + 3x +2) = (3x+2)/((x+1)(x+2))

Set up the partial fraction decomposition
(3x+2)/(x^2 + 3x +2) =

=(3x+2)/((x+1)(x+2)) = color(red)A/(x+2) + color(red)B/(x+1) " " " " " " (4)

Multiply LCD (least common denominator)

(3x+2) = A(x+1) + B(x+2)

Let x= -1
(3*-1+2)= A(-1+1)+B(-1+2)
color(red)(-1= B)

Let x= -2
3*-2+2= A(-2+1)+B(-2+2)
-4 = -A
color(red)(4=A)

Rewrite (3)
color(red)4/(x+2) - color(red) (1)/(x+1)

Rewrite (2)

int x^2/(x^2 +3x+2)dx = int 1 dx -(int 4/(x+2)dx -int(1)/(x+1) dx)

=int 1*dx -int 4/(x+2) dx +int 1/(x+1) dx

color(blue)( =x -4 ln|x+2| -ln|x+1| +C) " " " " " (5)

I hope this help.