How do you integrate x2+5x7x2(x+1)2 using partial fractions?

1 Answer
Feb 3, 2017

The answer is =7x+19ln(|x|)+11x+119ln(|x+1|)+C

Explanation:

Let's perform the decomposition into partial fractions

x2+5x7x2(x+1)2=Ax2+Bx+C(x+1)2+Dx+1

=A(x+1)2+Bx(x+1)2+Cx2+Dx2(x+1)(x2(x+1)2)

As the denominators are the same, we can compare the numerators

x2+5x7=A(x+1)2+Bx(x+1)2+Cx2+Dx2(x+1)

Let x=0, , 7=A

Let x=1, , 11=C

Coefficients of x3, , 0=B+D

Coefficients of x, , 5=2A+B

B=52A=5+14=19

D=B=19

Therefore,

x2+5x7x2(x+1)2=7x2+19x11(x+1)219x+1

So,

(x2+5xdxx2(x+1)2=7dxx2+19dxx11dx(x+1)219dxx+1

=7x+19ln(|x|)+11x+119ln(|x+1|)+C