How do you integrate int (x^2 - 5) / (x^2-4x+4)dx using partial fractions?

1 Answer
Jan 23, 2017

int(x^2-5)/(x^2-4x+4)dx=x+4ln|x-2|+1/(x-2)+c

Explanation:

(x^2-5)/(x^2-4x+4)=(x^2-4x+4+4x-9)/(x^2-4x+4)

= 1+(4x-9)/(x-2)^2

Let (4x-9)/(x-2)^2hArrA/(x-2)+B/(x-2)^2

= (A(x-2)+B)/(x-2)^2=(Ax+(B-2A))/(x-2)^2

Therefore A=4 and B-2A=-9 and B=-9+8=-1

i.e. (x^2-5)/(x^2-4x+4)=1+4/(x-2)-1/(x-2)^2

and int(x^2-5)/(x^2-4x+4)dx=int[1+4/(x-2)-1/(x-2)^2]dx

= x+4ln|x-2|+1/(x-2)+c