How do you integrate #int (x^2 - 5) / (x^2-4x+4)dx# using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Shwetank Mauria Jan 23, 2017 #int(x^2-5)/(x^2-4x+4)dx=x+4ln|x-2|+1/(x-2)+c# Explanation: #(x^2-5)/(x^2-4x+4)=(x^2-4x+4+4x-9)/(x^2-4x+4)# = #1+(4x-9)/(x-2)^2# Let #(4x-9)/(x-2)^2hArrA/(x-2)+B/(x-2)^2# = #(A(x-2)+B)/(x-2)^2=(Ax+(B-2A))/(x-2)^2# Therefore #A=4# and #B-2A=-9# and #B=-9+8=-1# i.e. #(x^2-5)/(x^2-4x+4)=1+4/(x-2)-1/(x-2)^2# and #int(x^2-5)/(x^2-4x+4)dx=int[1+4/(x-2)-1/(x-2)^2]dx# = #x+4ln|x-2|+1/(x-2)+c# Answer link Related questions How do I find the partial fraction decomposition of #(2x)/((x+3)(3x+1))# ? How do I find the partial fraction decomposition of #(1)/(x^3+2x^2+x# ? How do I find the partial fraction decomposition of #(x^4+1)/(x^5+4x^3)# ? How do I find the partial fraction decomposition of #(x^4)/(x^4-1)# ? How do I find the partial fraction decomposition of #(t^4+t^2+1)/((t^2+1)(t^2+4)^2)# ? How do I find the integral #intt^2/(t+4)dt# ? How do I find the integral #int(x-9)/((x+5)(x-2))dx# ? How do I find the integral #int1/((w-4)(w+1))dw# ? How do I find the integral #intdx/(x^2(x-1)^2)# ? How do I find the integral #int(x^3+4)/(x^2+4)dx# ? See all questions in Integral by Partial Fractions Impact of this question 2508 views around the world You can reuse this answer Creative Commons License