How do you integrate int (x + 2) / (2x^2 - x - 1) using partial fractions?

1 Answer
May 13, 2016

int (x+2) /(2x^2-x-1) * d x=-1/2 l n(2x+1)+ l n(x-1)+ C

Explanation:

int (x+2) /(2x^2-x-1) * d x=?

int (x+2)/((2x+1)*(x-1))d x

(x+2)/((2x+1)*(x-1))=A/(2x+1)+B/(x-1)

(x+2)/((2x+1)*(x-1))=(A(x-1)+B(2x+1))/((2x+1)(x-1))

x=1 rarr" "1+2=A(1-1)+B(2*1+1)

3=0+3B" "B=1

x=-1/2 rarr" "-1/2+2=A(-1/2-1)+0

3/2=A(-3/2)" "A=-1

int (x+2) /(2x^2-x-1) * d x=-int (d x)/(2x+1)+int (d x)/(x-1)

u=2x+1" "d u=2d x ,d x=(d u)/2" ; "v=x-1" "d v=d x

int (x+2) /(2x^2-x-1) * d x=-1/2 int (d u)/u +int (d v)/v

int (x+2) /(2x^2-x-1) * d x=-1/2 l n u +l n v +C

int (x+2) /(2x^2-x-1) * d x=-1/2 l n(2x+1)+ l n(x-1)+ C