How do you integrate int (x^2-2x+1)/(x-2)^3 using partial fractions?

2 Answers
Jan 18, 2017

ln|x-2|-2/(x-2)-1/{2(x-2)^2}+C.

Explanation:

We can solve the Problem without decomposing the

Integrand into Partial Fractions as shown below :

I=int(x^2-2x+1)/(x-2)^3dx=int{x(x-2)+1}/(x-2)^3dx

=int{(x(x-2))/(x-2)^3+1/(x-2)^3}dx

int{x/(x-2)^2+1/(x-2)^3}dx

=int[{(x-2)+2}/(x-2)^2+1/(x-2)^3]dx

=int{(x-2)/(x-2)^2+2/(x-2)^2+1/(x-2)^3}dx

=int{1/(x-2)+2/(x-2)^2+1/(x-2)^3}dx

Now, we use the following Result :

intf(x)dx=F(x)+crArrintf(ax+b)=1/aF(ax+b),ane0.

[ It can be easily proved by subst.ing, for ax+b.]

:. I=ln|x-2|-2/(x-2)-1/{2(x-2)^2}+C.

Enjoy Maths. , and, spread the Joy!

Jan 18, 2017

ln|x-2|-2/(x-2)-1/{2(x-2)^2}+C.

Explanation:

Noticing that (x-2)^3 is a perfect cube, there is no need for partial fractions. Substitute u=x-2 and (du)/(dx)=1 and the integral becomes:
int((u+2)^2-2(u+2)+1)/u^3 xx 1 du
=int(u^2+2u+1)/u^3du
=int1/u+2/u^2+1/u^3du
= ln|x-2|-2/(x-2)-1/{2(x-2)^2}+C.