How do you integrate int(x+1)/((x+5)(x-1)(x-4)) using partial fractions?

1 Answer
Sep 1, 2017

The integral is =-2/27ln(|x+5|)-1/9ln(|x-1|)+5/27ln(|x-4|)+C

Explanation:

Let's perform the decomposition into partial fractions

(x+1)/((x+5)(x-1)(x-4))=A/(x+5)+B/(x-1)+C/(x-4)

=(A(x-1)(x-4)+B(x+5)(x-4)+C(x+5)(x-1))/((x+5)(x-1)(x-4))

The denominators are the same, we compare the numerators

x+1=A(x-1)(x-4)+B(x+5)(x-4)+C(x+5)(x-1)

Let x=-5, =>, -4=A*(-6)(-9), =>, A=-2/27

Let x=1, =>, 2=B*(6)(-3), =>, B=-1/9

Let x=4, =>, 5=C*(9)(3), =>, C=5/27

Therefore,

(x+1)/((x+5)(x-1)(x-4))=(-2/27)/(x+5)+(-1/9)/(x-1)+(5/27)/(x-4)

int((x+1)dx)/((x+5)(x-1)(x-4))=int(-2/27dx)/(x+5)+int(-1/9dx)/(x-1)+int(5/27dx)/(x-4)

=-2/27ln(|x+5|)-1/9ln(|x-1|)+5/27ln(|x-4|)+C