How do you integrate #int(x+1)/((x^2+4)(3x-5))# using partial fractions?

1 Answer
Jun 26, 2018

#I=1/61{8ln|3x-5|-4ln|x^2+4|+7/2 tan^-1(x/2)}+c#

Explanation:

Here,

#I=int(x+1)/((x^2+4)(3x-5))dx#

To obtain Partial Fractions:

#color(blue)((x+1)/((x^2+4)(3x-5))=A/(3x-5)+(Bx+C)/(x^2+4)#

#=>x+1=A(x^2+4)+B(3x^2-5x)+C(3x-5)#

#=>x+1=x^2(A+3B)+x(-5B+3C)+(4A-5C)#

comparing coefficients of #x^2 ,x and #constant term :

#A+3B=0 =>A=-3Bto(1) ,#

#-5B+3C=1=>3C=1+5B=>C=(1+5B)/3to(2)# ,

#4A-5C=1to(3)#

Putting value of #A and C# into #(3)#

#4(-3B)-5((1+5B)/3)=1=>-36B-5-25B=3#

#:. color(blue)(B=-8/61#

From #(1)# ,we get , #A=-3(-8/61)=>color(blue)(A=24/61#

From #(2) #, we get #C=(1+5(-8/61))/3=(61-40)/(3*61)=>color(blue)(C=7/61#

So,

#I=1/61int{24/(3x-5)+(-8x+7)/(x^2+4)}dx#

#=1/61{8int3/(3x-5)dx-4int(2x)/(x^2+4)dx+7int1/(x^2+2^2)dx}#

#=1/61{8ln|3x-5|-4ln|x^2+4|+7*1/2 tan^-1(x/2)}+c#

Hence,

#I=1/61{8ln|3x-5|-4ln|x^2+4|+7/2 tan^-1(x/2)}+c#