How do you integrate int (x-1)/(3x^2-14x+15) using partial fractions?

1 Answer
Dec 4, 2016

The answer is =-1/6ln(∣3x-5∣)+1/2ln(∣x-3∣)+C

Explanation:

Let's factorise the denominator

3x^2-14x+15=(3x-5)(x-3)

So, the decomposition into partial fractions are

(x-1)/(3x^2-14x+15)=(x-1)/((3x-5)(x-3))=A/(3x-5)+B/(x-3)

=(A(x-3)+B(3x-5))/((3x-5)(x-3))

So, (x-1)=A(x-3)+B(3x-5)

Let x=3, =>, 2=4B, =>, B=1/2

Let x=5/3, =>, 2/3=-4A/3, =>,A=-1/2

so,

(x-1)/(3x^2-14x+15)=(-1/2)/(3x-5)+(1/2)/(x-3)

int((x-1)dx)/(3x^2-14x+15)=int((-1/2)dx)/(3x-5)+int((1/2)dx)/(x-3)

=-1/2*ln(∣3x-5∣)/3+1/2*ln(∣x-3∣)+C

=-1/6*ln(∣3x-5∣)+1/2*ln(∣x-3∣)+C