(x+1)/[(2x-4)*(x-4)(x-7)]
=1/2*(x+1)/[(x-2)*(x-4)(x-7)]
I decomposed (x+1)/[(x-2)*(x-4)(x-7)] into basic fractions,
(x+1)/[(x-2)*(x-4)(x-7)]
=A/(x-2)+B/(x-4)+C/(x-7)
After expanding denominator,
A(x-4)(x-7)+B(x-2)(x-7)+C(x-2)(x-4)=x+1
Set x=2, 10A=3, so A=3/10
Set x=4, -6B=5, so B=-5/6
Set x=7, 15C=8, so C=8/15
Thus,
int (x+1)/[(2x-4)*(x-4)(x-7)]*dx
=1/2int (x+1)/[(2x-4)*(x-4)(x-7)]*dx
=1/2*3/10int (dx)/(x-2)-1/2*5/6int (dx)/(x-4)+1/2*8/15int (dx)/(x-7)
=3/20int (dx)/(x-2)-5/12int (dx)/(x-4)+4/15int (dx)/(x-7)
=3/20Ln(Abs(x-2))-5/12(Abs(x-4))+4/15Ln(Abs(x-7))+C